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Abstract

The mechanism of side band perturbations to a uniform wave train is known to pro-
duce modulational instability and in deep water conditions it is accepted as a plausible
cause for rogue wave formation. In a condition of finite water depth, however, the inter-
action with the sea floor generates a wave-induced current that subtracts energy from5

the wave field and consequently attenuates this instability mechanism. As a result, a
plane wave remains stable under the influence of collinear side bands for relative wa-
ter depths kh≤1.36 (where k represents the wavenumber of the plane wave and h
the water depth), but it can still destabilise due to oblique perturbations. Using direct
numerical simulations of the Euler equations, it is here demonstrated that oblique side10

bands are capable of triggering modulational instability and eventually leading to the
formation of rogue waves also for kh≤1.36. Results, nonetheless, indicates that mod-
ulational instability cannot sustain a substantial wave growth for kh<0.8.

1 Introduction

The occurrence of extreme waves (also known as freak or rogue waves) has an impor-15

tant role in many branches of physics and engineering (see, for example, Chabchoub
et al., 2011; Onorato et al., 2013a, b; Chalikov, 2009; Babanin et al., 2011; Bitner-
Gregersen and Toffoli, 2012; Toffoli et al., 2008b; Solli et al., 2007; Kibler et al., 2010;
Bailung et al., 2011, among many others). Apart from a linear superposition of wave
modes and the effect of currents on waves (caustic theory), the modulational insta-20

bility of a plane wave to side band perturbations remains the most likely mechanism
by which rogue waves can appear in deep water (Zakharov and Ostrovsky, 2009; Os-
borne, 2010; Onorato et al., 2013b; Kharif et al., 2009), i.e. k0h →∞, where k0 is the
wavenumber of the plane wave and h is the water depth. Basically, this is a gener-
alisation of the Benjamin and Feir (1967) or modulational instability (Zakharov, 1968)25

and can be described by the nonlinear Schrödinger (NLS) equation (Zakharov, 1968),
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which is derived from the Euler equations by assuming that waves are weakly non-
linear (i.e. the wave steepness ε = k0a0 � 1, where a0 is the amplitude of the plane
carrier wave) and the bandwidth in wavenumber space is narrow (∆k/k0 � 1, where
∆k is the modulation wavenumber). For a propagation in one dimension, a linear sta-
bility analysis of the NLS equation indicates that unstable disturbances can lead to an5

exponential growth of a small-amplitude modulation and hence to rogue waves (see,
e.g., Osborne, 2010). If two-dimensional propagation is allowed, a 2+1 form of the NLS
equation indicates that unstable disturbances are not only limited to the ones propagat-
ing collinearly with the plane wave, but also include modes that propagate at an angle
with respect to the carrier. Note that the region of instability is stretched over a narrow10

domain, forming an angle of about 35.5◦ with the carrier wave direction towards high
wavenumbers (see the instability diagram in Fig. 1 of Gramstad and Trulsen, 2011,
for example). Although the most unstable modes remain collinear in water of infinite
depth, oblique perturbations tend to dominate the modulational instability for condition
of arbitrary water depths when k0h < ε−1 (Trulsen and Dysthe, 1996). This is also con-15

firmed by laboratory experiments in a relatively wide long wave flume (Trulsen et al.,
1999), where a plane wave without any initial seeding of unstable modes was observed
to transfer energy towards a lower oblique side band (see also Babanin et al., 2011;
Ribal et al., 2013). Direct numerical simulations of the 2+1 NLS equation, furthermore,
substantiate that not only can oblique disturbances sustain modulational instability, but20

they are also capable of triggering the formation of rogue waves (Osborne et al., 2000;
Slunyaev et al., 2002). For conditions of more finite water depths, k0h ≈ O(1), wave-
induced mean flow gradually subtracts energy from the wave fields with a concurrent
weakening of the modulational instability mechanism (see, e.g., Slunyaev et al., 2002;
Benjamin, 1967; Whitham, 1974; Janssen and Onorato, 2007; McLean, 1982; Benney25

and Roskes, 1969). As a result, there is a reduction of the region of instability (see Fig. 1
in Gramstad and Trulsen, 2011), leading to a complete stabilisation of collinear modes
at a critical relative water depths k0h = 1.36 (Benjamin, 1967; Janssen and Onorato,
2007). Beyond this threshold, nevertheless, oblique perturbations still remain unstable
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and numerical simulations of the 2+1 NLS equation, in this respect, confirm that such
modes can still trigger very large amplitude waves (Slunyaev et al., 2002). Moreover,
direct numerical simulations of the Euler equation for random finite water depth direc-
tional wave fields, show that the formation of extreme waves is sustained, leading to
substantial deviations from standard second-order based statistics (Toffoli et al., 2009).5

A methodical analysis on the effect of oblique perturbations on the nonlinear dynamics
of a plane wave has not been attempted yet and hence the transition between infinite
and finite depth still remains not completely clear. It is reasonable to expect, more-
over, that the region of instability would eventually vanish for sufficiently shallow water
depths. Therefore, there should exist a lower limit beyond which wave amplitude growth10

would cease. In the present paper, the nonlinear evolution of a plane wave in relative
water depth gradually varying from deep water (k0h →∞) to shallow water (k0h → 0)
conditions and for different degrees of nonlinearity (i.e. wave steepness) is discussed.
The problem is approached numerically by solving the Euler equations for the wave
motion with a Higher Order Spectral Method (HSOM) (West et al., 1987; Dommermuth15

and Yue, 1987). In the next two sections a concise description of the model and how
its initial conditions are set is presented. In Section 4, the evolution in time of the wave
field is discussed; nonlinear energy transfer between the carrier and the unstable per-
turbation waves and wave amplitude growth are presented. In the final Section, some
concluding remarks are given.20

2 The model

Under the hypotesis of an incompressible, inviscid and irrotational fluid flow, a velocity
potential φ(x ,y ,z, t) that satisfies the Laplace’s equation in the whole domain of the
fluid can be defined. For the present study, a constant water depth is also assumed.
At the bottom (z = −h) the vertical velocity is imposed and set to zero (φz |−h = 0). The25

free surface elevation and the velocity potential ψ(x ,y , t) =φ(x ,y ,η(x ,y , t), t) satisfy
the kinematic and dynamic free surface boundary conditions at z = η(x ,y , t). This leads
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to the following two equations in the free surface variables (see, e.g., Zakharov, 1968):

ψt +gη+
1
2

(
ψ2

x +ψ2
y

)
− 1

2
W 2

(
1+η2

x +η
2
y

)
= 0, (1)

ηt +ψxηx +ψyηy −W
(

1+η2
x +η

2
y

)
= 0, (2)

where partial derivatives are indicated by subscripts and where the vertical velocity at5

the free surface is indicated by W (x ,y , t) =φz |η The system of Eqs. (1) and (2) can
be solved using a higher order spectral method (HOSM) giving as a result the time
evolution of the surface elevation. Clarmond et al. (2006) showed that the approach of
West et al. (1987) is more consistent than the independently developed approach of
Dommermuth and Yue (1987). Therefore the former approach was used in this study.10

HOSM is based on a pseudo–spectral approach that uses a series expansion in the
wave steepness ε of the velocity potential of the form:

φ(x ,y ,z, t) =
M∑

m=1

φ(m)(x ,y ,z, t), (3)

where eachφ(m) is a quantity of order O(εm). In Eq. (3), M represent the order of nonlin-
earity that is considered. For each term ofφ(m), a Taylor expansion is performed around15

the point z=0 and combined with the expansion for the potential given by Eq. (3). The
following system is obtained after all terms at each order in wave steepness are col-
lected.

φ(1)(x ,y ,z = 0, t) = ψ(x ,y , t);

φ(m)(x ,y ,z = 0, t) = −
m−1∑
k=1

ηk

k !
∂k

∂zk
φ(m−k )(x ,y ,z = 0, t)

(4)
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for m = 2, 3, . . ., M. following West et al. (1987), W (x ,y , t) can in a similar way be
expanded in series and collected in order of wave steepness:

W (x ,y , t) =
M∑

m=1

W (m)(x ,y , t), (5)

where the terms W (m) are calculated from the φ(m) terms:

W (m)(x ,y , t) =
m−1∑
k=0

ηk

k !
∂k+1

∂zk+1
φ(m−k )(x ,y ,z = 0, t). (6)5

Taking a rectangular domain in space with dimensions Lx and Ly in x and y and
periodicity in both directions for the wave field, the next expression based on a double
Fourier series for each φ(m) term in finite water depth is used (see, e.g. Dean and
Dalrymple, 2000):

φ(m)(x ,y ,z, t) =

=
∑
k ,l

c(m)
k ,l

cosh
[
kk ,l (z +h)

]
cosh

(
kk ,lh

) cos
(
ωt −kk ,l ·x

)
,

(7)10

with wavenumbers kk ,l = |kk ,l | and kk ,l = (kx ,ky ) =
(

2πk
Lx

, 2πl
Ly

)
; ω =

√
g|kk ,l | is the angu-

lar frequency. c(m)
k ,l (t) represent the time-dependent modal coefficients of the potentials

φ(m). These coefficients are determined from Eq. (4) by using two-dimensional Fast
Fourier transform taking the free surface elevation and the free surface velocity poten-
tials as input variables.15

In this study, third and fifth-order expansion (i.e. M = 3 and 5) are evaluated. It al-
lows the inclusion of four waves interactions (see Tanaka, 2001a, b), which is directly
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responsible for modulational instability. The latter also includes higher order interac-
tions, which are responsible for class-II instability and concurrently for crescent waves
(see, for example, McLean, 1982; Kristiansen et al., 2005; Francius and Kharif, 2006).

After evaluating the vertical velocity at the free surface at order M, the free surface
velocity potential ψ(x ,y , t) and the surface elevation η(x ,y , t) can be integrated in time5

from equations (1) and (2). The time integration is then performed by means of a fourth-
order Runge–Kutta method with a constant time step. Aliasing errors generated in the
nonlinear terms are removed (see West et al., 1987; Tanaka, 2001b, for details). Note,
however, that no additional terms were included to take into account wave dissipation.
For further details of HOSM, the reader is referred to Tanaka (2001a). The HOSM ap-10

proach has been applied by several authors to study the nonlinear dynamics of surface
gravity waves e.g. Mori and Yasuda (2002), Ducrozet et al. (2007), Toffoli et al. (2008b,
a), Toffoli et al. (2009), Toffoli et al. (2010) and Xiao et al. (2013), among others. For ex-
amples of other numerical methods the reader is referred to e.g. Annenkov and Shrira
(2001), Clamond and Grue (2001) and Zakharov et al. (2002). Clamond et al. (2006)15

compare the performance of different numerical approaches including HOSM.

3 Initial conditions

The model simulates the temporal evolution of an initial surface η(x ,y , t = 0) and the
concurrent velocity potential ψ(x ,y , t = 0) with periodic boundaries. For the present
study, the input surface and potential were defined by superimposing a plane (car-20

rier) wave and four infinitesimal (small-amplitude) unstable side band perturbations.
For convenience, we defined the carrier as a monochromatic wave with wavelength
L0 = 156 m (wave period T0 = 10s in deep water) and propagating along the x direc-
tion. Several values of wave amplitude were applied to vary the wave steepness and
hence the degree of nonlinearity. Overall, wave fields with the following steepness were25

used: k0a0 = 0.1, 0.12 and 0.14, where a0 is the amplitude of the plane wave. Each con-
figuration was then tested within a wide range of water depths, varying from infinite to
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finite conditions (i.e. 0.5 < k0h <∞). The four small-amplitude perturbations were care-
fully selected within the unstable region of the instability diagram and with amplitude
equivalent to 0.05 % the one of the carrier wave. The modulational wavenumbers ∆Kx
and ∆Ky were defined such that the wave packets contains 5 waves under the mod-
ulation along the x directional of propagation and ∆Ky/∆Kx ≈ 0.7 for k0h > 1.36 and5

∆y/∆x ≈ 0.77 for k0h < 1.36. Overall, two lower (i.e. [−∆Kx ,∆Ky ], [−∆Kx ,−∆Ky ]) and
two upper (i.e. [∆Kx ,∆Ky ], [−∆Kx ,−∆Ky ]) unstable modes were defined. A schematic
representation showing the instability diagram and the location of the selected modes
is presented in Figs. 1 and 2 for k0h →∞ and k0h = 1.36, respectively. The effect of
collinear perturbations was also investigated by imposing ∆Ky = 0 (see left panels in10

Figs. 1 and 2). Note, however, that the resulting lower and upper collinear perturbations
have an amplitude that is equivalent to 0.1% of the carrier, i.e. twice the amplitude of
an oblique side band. The dimension of the physical domain was defined by a mesh
of 256×256 points. The resolution in both dimensions was ∆x = ∆y = 6.24 m so that
the domain includes 10 wavelengths and hence a dominant wave is discretised by 2515

grid points. The time step was chosen equal to ∆t = T0/150 = 0.067 s. On the whole,
the simulations estimated the evolution of the surface and velocity potential over a time
frame of 350 dominant periods.

4 Temporal evolution of wave amplitude

At each time step, the maximum value of the wave amplitude was estimated from the20

resulting output surface. A summary of the temporal evolution of the maximum ampli-

tude as normalised by the standard deviation of the wave envelope E1/2 is shown in
Fig. 3 for different relative depths and steepness. For simplicity only results that were
obtained by applying a fifth order expansion (i.e. M = 5) in the HOSM are presented
in this figure. Wave-wave interactions make the initial surface evolve in time exchang-25

ing energy between the carrier wave and the unstable side bands, with the lower dis-
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turbances growing faster than the upper ones (see, e.g., Lo and Mei, 1987; Tulin and
Waseda, 1999). In a condition of deep water, this energy transfer is followed by a growth
of the modulation that leads to a substantial increase of the wave amplitude. This am-
plification is triggered under the influence of both collinear and oblique disturbances.
The process, however, seems to occur more rapidly under the influence of the former5

(see Fig. 3a, b and c). Interestingly, collinear disturbances also induce a recurrence in
the phenomenon with a sequence of modulation and demodulation of the input surface
(cf., for example, Ribal et al., 2013). When seeded with oblique side band perturba-
tions, on the other hand, no significant evidence of recurrence can be detected. With
the reduction of relative water depth, the region of collinear unstable modes gradually10

shrinks with a concurrent attenuation of the wave amplitude growth. Eventually, for the
critical relative depth k0h = 1.36, collinear modulations become completely stable. As
a consequence, energy transfer to collinear side bands no longer occurs (see evolution
in time of the wave spectrum in Fig. 4) and concurrently amplitude growth ceases, re-
gardless the value of steepness of the initial surfaces (see dashed line in Fig. 3d, e and15

f). Oblique modulations, nevertheless, still remains unstable and grow at the expense
of the plane wave (see evidence of energy transfer from the plane wave to the oblique
side bands in Fig. 5). Note that a first evidence of an energy transfer to oblique side
bands can be found in Trulsen et al. (1999), albeit for fairly deep water. In the physical
space, the growth of oblique perturbations results in an amplification of the modulation,20

which roughly doubles its initial amplitude (see solid line in Fig. 3d, e and f). It is also
worth mentioning that the time scale for this amplification remains comparable with the
one observed in deep water, namely on the order of 100 wave periods. The process
speeds up slightly with the increase of the degree of nonlinearity (wave steepness)
though.25

Despite the fact that the region of instability keeps compressing for further reductions
of the relative water depth (see, e.g., Gramstad and Trulsen, 2011), oblique unstable
modes still sustain modulational instability and amplitude growth for k0h < 1.36. For the
specific case of k0h = 1 (see Fig. 3g, h and i), however, the effect on the modulation
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attenuates notably. For a low steepness (k0a0 = 0.1 for this example), particularly, wave
amplitude does not significant depart from the input condition. An increase of steep-
ness seems, however, to reactivate the mechanism, inducing a substantial wave am-
plification under the influence of oblique disturbances. It is remarkable, in this regard,
that the modulation still double its initial amplitude for the largest value of steepness5

considered in this study (i.e. k0a0 = 0.14). This result is in correspondence with simu-
lations of the 2+1 NLS (Slunyaev et al., 2002), which demonstrated that rogue waves
can still be generated in water of finite depth (i.e. k0h < 1.36), when a plane wave is
seeded by appropriate oblique side bands. In Figs. 6, 7 and 8 the maximum wave am-

plitude (as normalised by E1/2) is presented in function of relative water depth as a10

summary of the simulation results. On the whole, it is interesting to note that collinear
disturbances sustain a substantial amplification of an initially small amplitude modula-
tions (up to twice the initial value) until relatively shallow water conditions with k0h as
low as 2.4. For k0h ≤ 1.36, amplitude growth ceases completely under the influence
of collinear side bands. Oblique perturbations, on the other hand, produces a substan-15

tially stronger amplification of the initial modulation already for deep water conditions. In
contrast with the behaviour shown by a plane wave seeded with collinear disturbances,
the degree of amplification reduces much more gradually, starting from k0h < 48. Nev-
ertheless, a notable wave amplification still withstands also for k0h ≤ 1.36. It is worth
mentioning, however, that the modulation does not grow significantly for relative water20

depth k0h ≤ 0.8. We remark that results presented so far were obtained using M = 5 in
the HOSM and hence nonlinear mechanisms other than modulational instability were
included. In order to verify whether higher order terms have played a significant role
in the observed wave amplification in water of finite depth, it is instructive to compare
the simulations with runs that were performed with M = 3, where only four-waves in-25

teractions were included. This comparison is presented for both cases of collinear and
oblique disturbances in Fig. 9.

Despite some differences, higher order terms does not seems to produce any sub-
stantial variation in the results. This seems to corroborate that four waves interaction
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and hence modulational instability dominates the nonlinear dynamics of the wave fields
also in water of finite depth with relative depth k0h < 1.36, provided the carrier wave is
seeded by appropriate oblique side band perturbations.

5 Conclusions

Direct numerical simulations of the Euler equations using the Higher Order Spectral5

Method introduced by (West et al., 1987) were used to investigate the nonlinear wave
dynamics in finite water depth. Particularly, simulations were undertaken to investi-
gate the role of oblique unstable perturbations in withstanding modulational instability
beyond the critical relative water depth k0h = 1.36. Simulations were carried out by
tracking the temporal evolution of an initial surface composed by a plane wave and four10

oblique side band perturbations carefully selected within the region of instability. The
physical domain was defined to include 10 dominant wavelengths and discretised with
256×256 grid points. A time step corresponding to T0/150 was imposed, where T0 is
the period of the carrier wave. Runs were performed for different combinations of wave
steepness and water depth so that a wide range of relative depth here defined and15

ranging from deep to shallow water conditions (0.5 < k0h <∞). Configurations using
collinear perturbations were also applied for comparison. As expected, results indi-
cated that modulational instability ceases quite suddenly at k0h = 1.36, when the plane
wave is seeded with collinear perturbations in agreement with Benjamin (1967) and
Janssen and Onorato (2007). Under the influence of unstable side bands, however,20

modulational instability survives beyond this critical water depth and a substantial am-
plification of wave amplitude is observed until relative water depth k0h = 0.8. Beyond
this threshold, simulations did not indicate any significant growing of the modulations,
though.
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Fig. 1. Instability region and location of side bands for k0h →∞: collinear disturbances (left
panel); oblique disturbances (right panel).
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Fig. 2. Instability region and location of side bands for k0h = 1.36: collinear disturbances (left
panel); oblique disturbances (right panel).
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collinear perturbations (dashed line); plane wave seeded with oblique perturbations (solid line).
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Fig. 4. Wave number spectrum evolution in time. Case: plane wave with collinear perturbations
in relative water depth kh = 1.36.
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Fig. 8. Maximum wave amplification in function of kh for k0a0 = 0.14, M = 5.
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Fig. 9. Comparison with different orders.
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